Bayesian reconstruction and use of anatomical a priori information for emission tomography

نویسندگان

  • James E. Bowsher
  • Valen E. Johnson
  • Timothy G. Turkington
  • Ronald J. Jaszczak
  • Carey E. Floyd
  • R. Edward Coleman
چکیده

A Bayesian method is presented for simultaneously segmenting and reconstructing emission computed tomography (ECT) images and for incorporating high-resolution, anatomical information into those reconstructions. The anatomical information is often available from other imaging modalities such as computed tomography (CT) or magnetic resonance imaging (MRI). The Bayesian procedure models the ECT radiopharmaceutical distribution as consisting of regions, such that radiopharmaceutical activity is similar throughout each region. It estimates the number of regions, the mean activity of each region, and the region classification and mean activity of each voxel. Anatomical information is incorporated by assigning higher prior probabilities to ECT segmentations in which each ECT region stays within a single anatomical region. This approach is effective because anatomical tissue type often strongly influences radiopharmaceutical uptake. The Bayesian procedure is evaluated using physically acquired single-photon emission computed tomography (SPECT) projection data and MRI for the three-dimensional (3-D) Hoffman brain phantom. A clinically realistic count level is used. A cold lesion within the brain phantom is created during the SPECT scan but not during the MRI to demonstrate that the estimation procedure can detect ECT structure that is not present anatomically.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchical regularization for edge-preserving reconstruction of PET images

The data in PET emission and transmission tomography and in low dose X-ray tomography, consists of counts of photons originating from random events. The need to model the data as a Poisson process poses a challenge for traditional integral geometry-based reconstruction algorithms. Although qualitative a priori information of the target may be available, it may be difficult to encode it as a reg...

متن کامل

Reduction of Collimator Correction Artefacts with Bayesian Reconstruction in Spect

Poor resolution of single photon emission computed tomography (SPECT) has degraded its use in clinical practice. Collimator correction has been shown to improve the reconstructed resolution, but the correction can generate ringing artefacts, which lower image quality. This paper investigates whether Bayesian reconstruction methods could reduce these artefacts. We have applied and tested three B...

متن کامل

Utilization of an optimum low-pass filter during filtered back-projection in the reconstruction of single photon emission computed tomography images of small structures

Introduction:Low-pass filters eliminate noise, and accordingly improve the quality of filtered back-projection (FBP) in the reconstruction of single photon emission computed tomography (SPECT) images. This study aimed at selection of an optimum low-pass filter for FBP reconstruction of SPECT images of small structures. Material and Methods:Sp...

متن کامل

Using Local Median as the Location of the Prior Distribution in Iterative Emission Tomography Image Reconstruction

Iterative reconstruction algorithms like MLEM (Maximum Likelihood Expectation Maximization) can be regularized using a weighted roughness penalty term according to certain a priori assumptions of the desired image. In the MRP (Median Root Prior) algorithm the penalty is set according to the deviance of a pixel from the local median. This allows both noise reduction and edge preservation. The pr...

متن کامل

Clinically feasible reconstruction of 3D whole-body PET/CT data using blurred anatomical labels.

We present the results of utilizing aligned anatomical information from CT images to locally adjust image smoothness during the reconstruction of three-dimensional (3D) whole-body positron emission tomography (PET) data. The ability of whole-body PET imaging to detect malignant neoplasms is becoming widely recognized. Potentially useful, however, is the role of whole-body PET in quantitative es...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE transactions on medical imaging

دوره 15 5  شماره 

صفحات  -

تاریخ انتشار 1996